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CONTROLLABILITY OF NON-LINEAR SYSTEM*

Hector J. Sussman®** and Velimir Jurdjevic¥**

1. Introduction

In this article we study the controllability of non-linear systems

of the form

dx
dt

= Fix, u). (%)

Our objective is to establish criteria in terms of F and its de-
rivatives at.a point x which will give qualitative information about the
sets attainable from x. The study is based primarily on the work of
Chow [4] and Lobry [16], although it is similar in its approach to works
by other authors in that it makes systematic use of differential geometry
(for instance, see Hermann [8],[9], Haynes & Hermes [6], Brockett
[2], etc.).

The state variable x is assumed to take values in an arbitrary

real analytic manifold M, rather than ian. We chose this generalization
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because it creates no essential new difficulties while, on the other hand,
it allows for certain applications which are not commonly treated in
control theory. For instance, when M is a Lie group, then the present
results can be specialized to obtain more detailed controllability
criteria. Control problems on Lie groups were first considered by
R.W. Brockett in [2], and will be treated in a forthcoming paper by the
authors,

Most of the recent studies on controllability of non-linear systems
have essentially dealt with symmetric systems, i.e., systems of the
form (*) with the property that F(x, -u) = -F(x, u) (Hermann [9], Haynes
and Hermes [6], Lobry [16]). As remarked by Lobry in [16], the con-
sideration of symmetric systems often excludes interesting situations

arising from mechanics, In these cases the system is of the form

-%’tﬁ- = A(x) + H(x)* u.

A notable exception is the work by Lobry [17]. Lobry stated
(and proved for the case of two vector fields in33) the result for non-
symmetric systems that appears here as Theorem 3, 1,

Our results apply to non-symmetric systems., We obtain some
general information about the geometric structure of the attainable
sets showing that they ''practically'' are submanifolds (see Theorems
4.4 and 4,5 for the precise statements). This information yields a
complete answer to the problem of deciding when the sets attainable
from a poi: x have a non-empty interior. The criteria obtained
involve purely algebraic manipulations of F and its derivatives (of all

orders) at the point x (see the Remark below).
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In particu'ar, our results contain those of Kugera [14]. In this
connection we observe that our proofs are of interest even for the case
treated by Kucera (see Sussman [21]).

We have cmitted the consideration of non-autonomous systems;
they can be treated analogously by the familiar procedure of reduction
to an autonomous system (i.e., by considering the state variable to be
defined in M X R).

The organization of the article is as follows: in section 2 we intro-
duce notations and basic concepts; in addition, we quote some well-known
basic results which will be used later, In section 3 we prove our main
results in differential geometric terminology.

In section 4, we apply these results to control systems., We
derive the algebraic criteria mentioned above (Corollaries 4, 6 and 4, 7)
and we prove two ''global results: we show that, for a large class of
manifolds, accessibility (i. e. the property that, for any given x, the
set of points attainable from x has a nonempty interior) implies strong
accessibility (i. e. that, for any given x and any given fixed positive t,
the set of points attainable from x at time t has a nonempty interior). We
also show that, for a still larger class, including the Euclidean spaces,
controllability implies strong accessibility,

Finally, section 5 contains examples. We shovw how our results
can be used to derive the classical controllability criteria for the

system
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We also derive the results of Kudera and indicate some generalizations,

Remark. An assumption that i§ made throughout the article is
that F is an analytic function of x. This guarantees that all the inform-
ation about the system is actually contained in F and its derivatives (of
all orders) at a given point x. The analyticity assumption cannot be
relaxed without destroying the theory (cf. Ex>mple 5, 3),

Another assumption that we make is tha' the trajectories of the
system are everywhere :fined. As opposed to the previo‘us one, this
assumption is not essential (except for the ''global'’ Theorems 4. 9 and
4,10). We use it, however, because it considerably simplifies all the
proofs,

2. Preliminaries

We shall assume that the reader is famiiiar with the fundamental
notions of differential geometry. All the definitions and basic concepts
utilized in this paper can be found in standard books, (for instance,
[1], [3], [7]. [13] and [19)).

The following notations will be used throughout:

R--the set of real numbers.

Bn- -n-dimensional Euclidean space,

M -- the tangent space to the manifold M at the point x,.

TM--the tangent bundle of the manifold M,

V(M)--the set of all analytic vector fields on the analytic
manifold M,

We will regard V(M) as a Lie algebra over the reals.

For any X and Y in V(M), we will denote the Lie product by
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(_‘_(_'(](1 e., [_}_<__¥_] = XY - YX). All the manifolds will be assumed to
be paracompact., Recall that a submanifold of a paracompact manifold
is paracompact. Also, a connected pai'acompact manifold is a countable
union of compact sets. These facts imply (cf. Lobry [16], p 589):
LEMMA 2, 1. Let M be a (paracompact) manifold of dimension n.
Let S be a k-dimensional connected submanifold of M. If k< n, then
the set of points of S has an empty interior in M.
A subset D of _\_f_(_l\_/l_) will be called involutive if, whenever _‘_x_ and Y
belong to D, then [X, Y] also belongs to D. A subalgebra ofij\_[(_l\_/[) is an

involutive subspace, Let D ¢ V(M). An integral manifold of D is a

connected submanifold S of M with the property that Sx =¥ (D(x)) for
every x ¢ S, where D(x) = {X (x) : X ¢ D}, and where ¥ (D(x)) is the
subspace of Mx spanned by D(x). We state the followinz b2sic results
about integral manifolds:

LEMMA 2.2. Let D be an involutive subset of V(M), and Jet

¢ M. Then x is contained in a unique maximal integral manifold of

F

D (here "'maximal'' means ""maximal with respect to inclusion'’).
This result is classical if the dimension of £ (D(x)) is the same for
each x ¢ M(Chevalley [3]). For a proof in the general case, see Lobry

[16].

If D € V(M), we denote the smallest subalgebra =i V(M} which

contains D by (D), and the maximal integral manifold o: 1)) through
x by (D, x). Recall that, if X is a vector field on M, then .. .. an

integral curve of X if qis a smooth mapping from a closed interval I,

1 CR, into _I\_/I__such that
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—d—%(-tﬁ— = X(a(t)) for ail t e1,

DEFINITION 2,3, If D is a subset of V(M), then an integral
curve of D is a mapping g from a real interval [t,t'] into M such that
there exist t = t0< 9 <.,..< tk =t, and elements Xl" .. ,Xk of D
with the property that the restriction of a to [ti-l’ ti] is an integral
curve of Xi for eachi=1,2,..,,k, We have the following clementary
fact:

LEMMA 2.4. LetD V(M). Leta: [t),t;] ~M be an integral
curve of D, and let a(t) = x for some t ¢ [to, tl]. Then a(s) e (D, x)
for all s ¢ [fo, tl].

Proof. It is sufficient to consider the case when ais an integral
curve of X, X ¢ D. For each maximal integral manrifold S of J(D),
let J(S) be the set of all s ¢ [to,tl] such that g(s) € S. From the I»cal
existence and uniqueness of solutions of ordinary differential equations
it follows that, if s € J(S), then there exists r >0 such that (e-r, s+r)n
[to, tl] < J(S). Thus, J(S) is open relative to [to,tl]. Zince the
maximal integral manifolds of & (D) are disjoint, we h~.ve that, for some
maximal integral manifold S, [to, tl] C J(S). But oft) ¢ XD, x); therefore,
our proof is cdmplete.

Chow's theorem provides a partial converse to the above lemma,
If D CV(M), then D is symmetric if, whenever X ¢ D, -X also belongs
tc D. We can now state Chow's theorem as follows:

LEMMA 2,5, LetD € V(M) be symmetric, and let x ¢ M. Then,
for every y ¢ (D, x) there exists an integral curve a: [C,T] - M of D,

with T 20, such that q(0) = x and o(T) = vy.
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In other words, every point of the maximal integral manifold of
7 (D) through » an be reached in positive time by following an integral
curve of D having x as its initial point.

DEFINITION 2. 6. Let D (’_X(_I\_/{), and let x ¢ M. If T > 0, then,

for any y ¢ M, y is D-reachable from x at time T if there exists an in-

tegral curve a of D defined on [0, T] such that g (0) = x and a(T) =y. The
set of all D-reachable points from x at time T is denoted by Lx(D, T).
The union of Lx(D,t) for 0 <t < = (respectively for 0 st s T) is denoted
by EX(D) (respectively EX(D,T)).

3. Integrability of Families of Analytic Vector Fields

As an introduction to the general situation, we first considered the
case when D is a symmetric subset of Y(M). Chow's theorem can be
utilized to obtain a necessary and sufficient condition for I;x(D) to have
a non-empty interior in M. Let n =dim M =dim #(D) (x). Then
ID,x} is an n-dimensional submanifold of M, and hence is open in M,

By Chow's theorem we have thati.,x(D) = (D,x). We conclude that ’ldx(D)

is >pen in M. Conversely (and without invoking the symmetry of D) if
dim¥ (D) (x)<n, then_I(Q),z_c) is a connected submanifold of M of dimension
less than n; then from Lemma 2,1 it follows directly that}(_]i),x) has an
empty interior in M, Since EX(D)CH D, x), Ex(D) also has an empty interior,
Thus, if D is symmetric, a necessary and sufficient condition for kx(D)

to have a non-empty interior in M is that lim &(D)(x) = dim M, Moreover,
this condition is necessary even in the non-symmetric case (Lobry [16]).
We shall show that it is alsc sufficient. For this purpose we shall

assume that the elements of D are complete--recall that a vectc r field

X is complete the integral curves of X are defined for all real t

(Cf- [13]' p- 13).
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THEOREM 3. 1. Let M be an n-dimensional analytic manifold,
and let D ¢ V(M) be a family of complete vector fields. A necessary
and sufficient condition for l,x(D) to have :;1 non-empty interior in M is
that dim.7(D)(x) = n. Moreover, if this condition is satisfied, then for
e;ach T >0, the interior of E’JX(D, T) is dense in i_,x(D, T) (thus, in
particular, }:x(D,T) has a non-empty interior).

Proof. We already know that the condition of the theorem is

necessary. So we assume that dim #{D)(x) = n, and we prove the
second statement, Clearly, this will imply that I“x(D) has a non-empty
interior in M. Without loss of generality we can assume that D is finite.

Let D = {X ,,.,,Xk}. For eachi=1,2,...,k, let@i(t,-) be the one-

1

parameter group of diffeomophisms induced by Xi(i. e., t —>Qi(t, y) is

the integral curve of Xi which passes through y at t = 0; the fact that

it is defined for all realt follows from the completeness of Xi)' If m
is a natural numberiz (tl, oo tm) is an element ome, andi =

(il, .o s im) is an m-tuple of natural numbers between 1 and k, then we
denote the element Qil(tl, Qiz(tz, e ey 5im(tm. x)...)) by Qi(b x). Let + D

be the family of vector fields obtained from D by adjoining the vector

fields -X .»-X, toD. Then, + D is symmetric, and dimF(1D) (x) = n.

| k

From Chow's theorem we conclude that Lx(;l_- Q)'is open in M. Clearly,
the elements of L _(1D) are exactly those elements of M which are of

the form Qi (t,x) for some m, some m-tuple i, and some t € Rm_ For

each i, and for each natural number N > 0, let A (i, N) be the set of

all points of M of the form ¢ (t,x),where ||t|| =N (here, litl = It,|

+... +| tml). Since A (i, N) is the image of the compact set

{t: HL | = N}under the continuous mapping t - § . (t, %), we have

~
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that A(i , N) is compact. Also, since Lx( + D) is the union of the sets
A(i,N) (taken over m, i and N), it follows from the category theorem that,

for some i and N, the set A(i,N) has a ﬁon—empty interior in M. For
such ani, let F:R™ -~ M be defined by F(t) = ;i(b x). Then F is an

~

l analytic mapping whose image has a non-empty interior in M. By Sard's

theorem (Sternberg [19]), the differential dFt of F at t must have rank

~

n for some t ¢ R ™ Since dFt depends analytically on t , it follows

~
~ ~

~

# .
that the set @ ={t:t =z R m, rank d-—Ft <n} has an empty interior.

#
Let @ =R™ - Q". ThenQ is open and dense in Em

LetT >0, and lety ¢ LX(D,T). We now show that y is in the

<

closure of the interior of Lx(D,T). It is clearly sufficient to assume
that y € Lx(D' t), where 0= t < T (for each point of kxlD, T) is in the

closure ofU{Lx(D,t) :0st<T]}). Lety =§j(i,x) where j =(jl,....j ).

~ ~ p

= > = =
s (sl....,sp), 5, O,...,sp>0, andsl+...+sp t. Let U =Qf)

{t:HtH<T-t}n{t:t1>0,...,t >0}. U is open, and its closure
~ ~ ~t m —
contains the original 0 of R ™ Since dFt has rank n at each pointt ¢ U,

it follows that F(U) is open. LetV = {@J.(i, F(f)) : t e U} V is the
image of F(U) under the diffeomorphism z - §. (3 . 2); therefore, V is

A~

open in M and, moreover, every eiement ofX is D-reachable from x
at time ||s|| + |[t]l =t + {[t]l < T (here we use essentially the fact

that t tm are non-negative). It remains to be shown that y belongs

-l,..-,

to the closure of V. Let {t q} be a sequence of elements of U which
converges to 0. Then

lim 8.(s, F(t ) =8, (s, F(0) =2.(s,%) =v.

J
~ ~ ~

This completes the proof of the theorem.
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We now waat tu state an analogous theorem for the sets Lx(D, T).
For this purpose, we shall introduce a Lie subalgebra JO(D) of .7(D)
which will be related to these sets in the same way as (D) is related to
the sets 14\~(D,"_"). The aim of the following informal remarks is to
motivate our definition of Jb(D). We shall ignore the fact that time has
to be positive. Moreover, we shall assume, for simplicity, that D
consists ot aree vector fields Xl'x?. and X3, Let Ql’ ¢, and § 3 be the
correspondirg one-parameter groups. It is clear thatJ{D) has the
f,1lowing ''geometric interpretation'': F(D)(x) is, for each x ¢ M, the
set of all liriting directions of curves through x that are entirely « n-
tained ir LJX(D). Thus, for instance, if i=1,2,3, then all the points in
the curve t — § i(t, x) are attainable from x (recall that we are forgetting
about positivity), and this is reflected in the fact that Xi(x) belongs to
FJ(D)(x)j. Sim‘lariy, the curves aij(t) = Qi(-t,Qj(-t,Qi(t,Qj(t, x))))are also
contained in I':.‘X(D). By the well known geometric interpretation of the
Lie bracket (cf. Helgason [7], p. 97), the limiting direction of a'ij
is [Xi,Xj](x) (after a reprrametrization). Thus, it is clear why [Xi,Xj]
belongs to #(D). Obviously, a similar argument works for the brackets
of higher order, The geometrical meaning of #{D) is now obvious,

1f ,VO(D) is-going to play the desired role it is clear that J’O(D)(x)
will have to be the set of all limiting direction s of curves y through x
such that y (t) is "attainable from x in zero units of time' for all t.
Notice that the curves ¢ iJ.(t) of the preceding paragraph have this
pfoperty. Indeed, qoft) ca. he reached from x by ''moving forward' in

time 2t units, and then ""backward'' another 2t units, This shows that
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the vector fields [Xi’xj] are reasonable candidates for membership in
,i’O(D). A similar argument applies to higher order brackets, such as
[X., [Xj,Xk]], etc. On the other hand, a vector field such as X. should

1

not be included in.fO(D) by definition, because we do not know whether

the points 4 i(t.x), t 4 0, can be reached from._ig in 0 units of time (but,

of course, it may happen that some Xi will belong to %(D) anvhow;

for instance, we could have X, = [XZ’X3])‘ However, the vector fields

Xi - Xj will have to be included, because (Xi-Xj)(x) is the limiting

direction of the curve t—»Qj(;t,Qi(t, x)). In other words, the subspace

generated by the differences Xi - Xj will have to be included in .fO(D),
This subspace can also be defined as the set of all linear combinations

)\ Xl + )\2X2+x 3X3 such that At )\2 tAg = 0 (that all the differences

1

Xi - Xj are linear combinations of this type is trivial; conversely, if

Y = A X+ Ok X, hgXg withhy +h, +h5 =0, then ¥ = X X, +),X, +

(-h] - Ap) Xg,de, Y =4 (X -X5) +X,(X, - X))

1
We conclude that the reasonable candidates for membership in
Jy(D) are: (i) all the brackets [Xi'xj]’ [Xi’ [X.,Xk]], etc., and (ii) all
the sums "1X1 3’
generated by (i) is clearly the derived algebra of F(D) (by definition,

)
+ X2 + )\3X where Z)\i = 0. Notice that the subset

the derived algébra of a Lie algebra L is the subalgebra L' of L generated
by all the brackets [X,Y], X ¢ L, Y ¢ L; it is easy to check that L'
is in fact an ideal of L; cf. Helgason [7], p. 133.

We now return to o..r formal development. LetJZD) denote the
derived algebra of (D). Motivated by the previous remarks, we define

.i'o(D) to be the set of all sums X + Y, where X is a linear combination
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MT

A.X. withX.,...,X e¢eDand Z), =0,
i ) i

i=1 1

and where Y ¢ (D). It is obvious that .FO(D) is an ideal of (D),

One shows easily that 7 (D) is the set of all vector fields of the form

n M

AX,. +Y
ii

i=1

where Xl"' . ,Xp belong to D, Y belongs to 4 '(D), and \ 1* - ’)‘p are

reals (but Xl

mediately that J'O(D) is a subspace of J(D) of codimension zero or one. The

+... + )‘p need not be zero), From this it follows im-

codimension will be zero if and only if someXe D belongs to F,(D) (in
which case every X ¢ D will belong to J’O(D)). Similarly for each x ¢ M,
if k = dimJ(D) (x), then the dimensio.n ofg'o(D) (x) will either be k or
k-1,

We shall also be interested in associating to each D CC V(M), a
set D* of vector fields in the manifold MXR, Recall that the tangent
space to MXR at a point (x,r) (x e M, r eB) is identified, in a natural
way, to the direct sum M, ® R_. Ifx eV(M), Y e V(R), we define the

vector field X @Y ¢ V(MXR) *v

(X ®Y) (x, r) =(X(x), Y(r)).
3

The set D* is defined to be the set of all vector fields X@-é-t-, where
X €D, and where —a%- is the '"canonical' vector field on R ( -a-a-t—f) (r) =

%{- (r)). Using the identity [X@X', Y®Y' ] =[X,Y] ® [X',Y'], one

shows easily that F7'(D* is the set of all vector fields of the form X () 0,
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where X .7 (D) and 0 is the zero vector field, Therefore, #(D*) is the

set of vector fields of the form

P 3

> _ #

2 )\i(xi@ at)+Y@g (#)
where Xl""'xp belong to D, Y - .57' (D), and )\1,... ,)\pare scalars,

THEOREM 3.2. Let M be an malytic n-dimensional manifold, and
let D be a family of comp_lete analytic vector fields on M. Let x ¢ M, and
let T >0. Then LX(D,T) has a non-empty interior in M if and only if dim.ﬂ(‘)(D)
(x) = n. Moreover, in this case, the interior of Lx(D,T) is dense in Lx(D,T),

Proof. The main idea in this proof is to modify our problem so that

we can ''keep track' of the time elapsed while we move along an integral
curve of D. We shall then apply Theorem 3,1 to the modified system. We
shall work in the manifold M X R. As in the preceding paragraphs, we
let the family D* of vector fields on M X R be defined by D* = xX® -aa—t :
X ¢ L'} Itis clear that there is a one-to-one correspondence between
integral curves g of D such that o(0) = x, and integral curves 8(D*) such
that g(0) = (%, 0). This correspondence is given by assigning to each curve
athe curve t —(aft),t). It follows that y ¢ Lx(D’ T) if and only if (y, T)

€ E(x, 0)(D*,T). We show that Lx(D, T) has a non-empty interior in M

if and only if L (x, 0) (D*) has 2 non-empty interior in M X R. Assume
that LX(D, T) has a non-empty interior in M, and let V be a non-empty
open set such that V& LX(D,T). Let X ¢ D, and let & be the one-para-
meter group of diffeomorphisms of M generated by X. Consider the
mapping F : VXE» MXE defined by F(v,t) =(3(t,v),T +t). Itis
immediate that the differential of F has rank . + 1 everywhere. Therefore

F maps open sets onto open sets.
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Since F(VX(O,m))C’%(X’O)(C*}, we conclude that E(x,O)(D*) has a non-
empty interior in MXR,

To prove the converse, assume that I’:’.(x' 0)(D*) has a non-empty
interior in MXE By Theorem 3,1, for each t with 0 <t< _'I;. E(x, 0)
(D*,t) has a non-empty interior in MXR, Let V be a non-empty open
subset of M, and let W be a non-empty open subset ofB such that VXW C
L (x, 0)(D”‘,t:). Let s e W, Since VX {s} [l L X, 0)(D"‘,t), we conclude
that VC Lx(D' s). LetX ¢ D, and let ¥ be the corresponding one-para-
meter group on M. Denote the mappingy - 8 (T-s,y) by G. Then
G(V) is open. Since G(V) is contained in Lx(D,T), it follows that
Lx(D,T) has a non-empty interior,

We conclude from Theorem 3,1 that Lx(D,T) has a nonempty
interior if and only if dim F(D*)(x,0) =n + 1, To complete the proof of
the first part of our statement, we must show that this last condition holds
if and only if dimg’o(D)(x) =n, We recall, from the remarks pre-

ceding this proof, the fact that every X* ¢ J(D¥*) can be expressed as

P
# ¥ = b _é..
(F) Xxx= 2 (XD 55 )+YF)O where X)se.. s X belong to D

i=1

and Y ¢ (D), Now assume that dim J (D*){x,0) =n + 1, Let
Ve Mx‘ Then (v, 0) must belong to F(D*)(x, 0), so that (v, 0) = X*(x, 0),
where X* ¢F(D*). Then formula (#) holds for suitable Ay X Y,

Therefore

v=(Z )‘ixi + Y) (x),

é.nd
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The last equality implies that Z)‘i = 0, so that the vector field Z) ixi +Y
belongs to J'O(D). Thus - ¢ .%(D)(x). We have shown that Mx C%(D)(x).
Therefore the dimension of g’O(D)(x) is n, Conversely, let dim Q'O(D)(x) = n,

Let v ¢ Mx. Then v ¢ J’O(D)(x), so that
= (=
v=(EAX +Y) (),

where the Xi belong to D, Y ¢ J(D) and Eki =0, Therefore,

(v,0) = (ZA X, +Y) D) (Er) 2 (x,0)

) 3
_(E;\i(xi@-&- + Y @2)(::,0).

This shows that (v, 0) belongs to J(D*) (x,0). Pick an X ¢D.,
Then X@-éét- (x,0) belongs to D¥(x, 0) by definition, and X @ E
(x, 0) belongs to 4 (D¥*)(x,0) by the previous remarks. Therefore

(0, 5%— (0)) belongs to F (D*)(x,0). We have thus shown that F(D*)(x, 0)

contains all the vectors (v,0), v ¢ Mx, and also the vector (0, -éa-{- (0)).

ThereforeJ (D*)(x, 0) = (MXE)(X’ 0y’ so that dim . (D¥*)(x,0) =n + 1
as stated,

We now prove the second part of the theorem., As we remarked
earlier, there is no loss of generality in assuming that Dis finite, Let
VG Lx(D, T). Using the notations cf the proof of Theorem 3.1, let

=3 .(t,x), wherei =(i,,...,i_), and where t ¢ R ™ is such that
Y 1 ~ ~ l m -~ ~

ti>0 fori=1,...,mand \“l:‘“ =T, Let {sk] C (O,tm) be such that

lim 81 = 0, Since our condition for Lx(D,T) to have a non-empty

k + o

interior is independent of T, we conclude that Lx(D,t) has a non-empty

interior for allt >0, In particular, for each k > 0, there exists X,

which belongs to the interior of Lx(D, sk). Let L K (tl’ e tm-l’
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tm - sk), and let Yy = Qi (ik,xk), For each k >0, Yy belongs to Lx(D,T);

~v

since Qi is a diffeomorphism, Vi is the interior of Lx(D,T). Also,x, -x

k
as k -=» because D is finite and S - 0. Since Qi is continuous in both
variables, and siice t K b we have that Y Yo and our theorem is proved.

The results of the previous theorems can be utilized to obtain inform-
ation about the sets Ex(D'T) and LX(D, T), even when dimZF1D)(x) < n.

THEOREM 3.3. Let D C V(M) be a family of complete vector fields,
Then, for each T >J, the set I:'x(D,T) is contained in I(D, x). Morzover,
in the topology of I(D, x), the interior of I.ix(D’ T) is dense in I':(D,T).
Lx(D, T) has a non-empty interior in I(D, x) if and only if dimgo(D(x)) =
dimJ(D)(x) and, in this case, the interior of LX(D,T) is dense in Lx(D, T).

Proof. If§ e (D), then X is tangent to I(D, x). Thus, there is a
well-defined restriction_}s# of X to _I;(Q,J_c). We denote the set of all such
restrictions of elements of D by D#, Since [X,Y}# = [X#, Y#], it follows
that 9’(2)# =J(2#). Analogously, we have that JO(D)# = J’O(D#), If
we now apply the previous theorems to the family D# of vector fields in
I(D, x), we get all the conclusions of the theorem.

COROLLARY 3.4. Let S be a maximal integral manifold of (D).
Then the dimension of gb(g)(:_c) is the same for all x ¢ S,

_Pi_x:go_f._ If dimJ(D) (x) = k then, for each x ¢ S, the dimension of
g'o(D)(:r.) is either k or k-1. We show that, if dim J'O(D)(y) = k-1 for
some x ¢ S, then dim 9’0(D) (y) =k-1 forall yeS. "etQ be a non-
empty, open (relative to S) subset of I,Jx(D) (this is possible by Theorem
3.3). We first show that, if y €2, then dim JO(D)(y) = k-1, If this
were not the case, then necessarily dimﬂb(D)(y) = k., Then Ly(D, t) would

have a non-empty interior in S for all t >0. This would
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imply that Lx(D, t) has a non-empty interior in S, But by our assumption
this is impossible, Thus, dim JO(D)(y) =k -1 forally €. Siuce S
is connected, and 2 is open in S, we have that dim j’o(D)(y) = k-1 for
all v ¢ 5; therefore, our statement is proved,

We now proceed to study the case when dim JO(D)(x) = dim

J(D)(x) - 1. We begin by proving some preliminary lemmas,

LEMMA 3,5, Let D V(M) be a family of ~~mplete vector fielcs,
IfXeD, let {8 t} be the .one-parameter group generated by X. Then,
for every x ¢ M, and every t ¢ R the differential da_st maps J‘O(D)(x)
onto .JTO(D)(Qt(X))-

Proof, We first show that for every y ¢ M there is an r >0 such

that, if v QJO(D)(y), then d 8 t(v) € .%"O(D)(Qt(y)) for all t with |f| <r,
It is sufficient to show that for every'r_z € M and every v eJO(D)(y)
there exists an r >0 such that 48 t(v) € J'O(D)(Q t(y)) for all t with
|t| <r, LetvyeM, andletve .70 (D)y). Ifv =Y{y) for some
Y e JO(D), then an easy computation shows. that there exists a neighbor-
hood of t = 0 such that d8 (v) = Z, L'l_ll.l_ x'P v (@t(y))ti for all
t in this neighborhood, where [X(o),Y] =Y, and [X(n), Y] = [X, [X(n- l),
Y]] forn =1,2,... Since each term of the above series belongs to

T 0(D)(Q t(y)), we have that d3 t(v) e.?'o(D)(Qt(y)) for t sufficiently small.
Also, for such * we have that dq:t (.70(D)(y)) = JO(D)(Qt(y)); this is so
because d§ ¢ is une-to-one, and dim J’O(D)(y) = dim J'O(D)(Qt(y))
(Corollary 3.4), It follows easily that the set of all t such that
dit(yO(D)(x)) = JO(D)(Qt(x)) is both open and closed, If v ¢ J’O(D)(x),

we can conclude that Qt (v) e J’n(D)(Q t(v)) for allt. This completes

our proof,
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As we remarked earlier, .70(_];)_) is a subalgebra of .7(D). We will
denote the maximal integral manifold of 9’0(2) through x by IO(D' x).
If X ¢ D then, by the previous lemma, @t(IO(D, x)) i8 a maximzal integral
manifold of J'O(D).

LEMMA 3.6, Let D C V(M) be a family of complete vecto. fields.
Let X and Y be elements of D, and let { Qt} and {‘yt] be their correspond-
ing one-parameter groups. If S is a niaximal integral r-anifold of

.fO(D) then, for any t ¢ R, e}t(S) =Yt(S).

Proof, LetX,Y, q>t, ‘}'t and S satisfy the conditions of the iemraa.

Let P be the maximal integral manifold of & (D) which contains S. If

dim P = dim S, then S = P, and @t(S) =S =yt(S). Assume that dim 5 = k
dim (P) -1. We first show that there is an r >0 such that &y (S) = \yt(S)
whenever |t | <r, Letx¢S. The mapping (s,t) —» Qt(s) has rank k +1
at (x,0). Let 2 be a neighborhood of x in S, and let §> 0 be such that
this mapping, restricted to 2 X (- 6,8 is a diffeornorphism onto an open
subset Qf of P, If y ¢Q#, let s(y) and f(y) be such that By (89D = y.
Clearly, f is analytic in Q#, and fly) =0 if ~ond nly if y e Q. Mr .. over,
Xf=1inQ# For every t such that |t| < 8, the net 6t($2) is nn
integral mani{»ld of 3’0(9). The vector fieid Y - X ie tangent to Qt(Q)
and, since f is constant on Qt{Q), it follows that Yi = Xf on Qt(Q). Since
Q# is the union of the sets 6t($'2) over -§ < t <« §, we conclude that
Yf=Xf =1 on Q#, Letr >0 be such that the curve t — 8_Jv(x), de-
fined on -r<t< r, is contained in Q#, In addition, let v< 8, Let g(t) =
f(@_t(‘ft(x)). Then g is analytic in (-r, r), and moreover g(t) = f(‘yt(x)) -t
We have that q' = (Yf) (\yt(x)) - 1 = 0 and, since g(0) = 0 it follows that

g =0on(-r,r), But this means that @_t(‘yt(x)) e N

for alt t ¢ (-r,r). Hence, if |t| < r, the manifold
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Q_t(\yt(S)) intersects S. Sirce Q_t(‘yt(S)) is a maximnal integral manifold
of .‘/'C(D), it follows that Q-t(‘lj t( S)) = S, and tnat \yt( S) = §t( S). LetA

be the set of all t such that QT (S) =Y T(S) for all v in a neighborhood of
t. Then A is obviously open, and we have shown that ' ¢ A. It follows
easily from the preceding argument that A is closed. Therefore,

@t(S) = \yt( S) for ail real t, and our proof is complete,

Acccrding to the above lemma, if DC V(M) and if x ¢ M, then
the manifold Q’;(IO(D’X)) depexds only on t, and not on the particular
choicz of X . We shall derote this manifold by Ig (D,x). It is clear
that IB(D,x) could be defined as the maximal integral manifold of
JO(D) passing through y, where y is an arbitrary point of Lx(D, t).

Finally, we prove a factorization property of maps that will be
utilized several times,

LEMMA 3.7, Let E be a locally convex vector space, Jet
KCE, and let C be a convex dense subset of K. Let F: K - ID,x)
be a continuous mapping such that F(C) is contained in a maximal
integral manifold S of JO(Q), Then F(K) is contained in S, and F,
as a mapping from K into S, is continuous,

Proof. If din. S = dim I(D,x), then S = (D, x), and the conclusion

follows trivially, Therefore, we shall assume that dim S = dim I(D,x) -1,
Letk e K, let X ¢ D, and let {Qt] be the one-parameter group

induced by X. Then, as in the proof of Lemma 3, 6, we can find a

neighborhood Q »f F(k) in IO(D,E(E)), and a positive number §, such

that the mapping (s, t) -»!t(s) is a diffeomorphism of Q@ X (-5, §) onto

an open subset Q# of I(D,x). Let U be an open convex neighborhood of

k such that F(UNK) C Q#. For eacht ¢ (-8, §), the set g (Q) is an
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integral manifold of J'O(D); therefore, if Qt(Q) intersects _§, then
Qt(Q) is contained and open in S, Let A = {t: |t| < &, Qt(Q) C Ss}.
It follows that S N Qf is the union of the sets Qt(Q), t ¢ A. These sets
are mutually disjoint and, since S is separable, it foliows that A is at
most countable, Let y —»(s(y), f(y)) be the inverse in Q¥ of the map
(s,t) - Qt(s), Then the function g defined in UN E by g(m) = {(F(m))}
is continuous, Since F(UNC)C S N Qff, we conclude that g(m) ¢ A
forallm ¢ U () C. ButA is at most cour:;table, and U N C is convex;
therefore g is constant on UN C. Since UN C is dense in U N K, we
have that g is constant on U K. Obviously g(k) = 0, and therefore
g(m) =0 forallm ¢ UNK; thus F(m) ¢ 2. This shows that Q con-
tains a point of S; hence QCS, agd F(k) ¢ S, This proves the first
part of the lemma,

To prove the second part, let {kn} C K converge to k. Since F
is continuous, F(kn) - F(k). For large n, s(F(kn)) is defined. Since
5 is continuous, s(F(k )) converges to s(F(k)) inﬁ. But g(k ) =0, and
therefore s(F(kn)) = F(kn). Similarly, s(F(k)) = F(k). We have thus
chown that F(kn) converges to F(k) in S,and our proof is complete.

Remark 3.8, It ir clear that the preceding lemma is valid under
weaker assumptions about _(_3_ and K. For instance, it is sufficient to
assume that, for every k ¢ K and for every neighborhood U of k,
there exists a neighborhood V of k suchthat V¢ U and V ) C is
connected,

We now state and prove the theorem towards which we have been

aiming.
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THEOREM 3.9. Let D C V(M) be a set of complete vector
fields, andletx ¢ M., Then, for each}'_ > 0, LX(D,T) (s I:)(D,x) and,
moreover, the interior of Lx(D,T)(reiative to I;(D,x)) is dense in Lx(D, T)
(and is, in particular, non-empty).

Proof. If dim 4 0(D)(x) = dim J(D)(x); then we have from Corollary
3.4 that J’O(D)(y) = F(D)(y) for all y ¢ ID,x). THherefore, IO(D,x) =
IE(D,x) and our conclusion follows from Theorem 3, 3, Assume that
dim J‘O(D)(x) =k = dirﬁJ(D)(x) - 1, It is clear from Lemma 3. 6 that,
if « is an integral curve of D such that q(0) = x, then o(T) ¢ Ig(D,x);
hence, Lx(D,T) C I'g(D,x).

We now show that, if y ¢ Lx(D,T), then y 1is the limit of points
which belong to the interior of Lx(D,T). Let D = {Xl, e Xk} and
lety = Qi('l‘l,x), where “E“ =T, and Ti >0 fori=1,2,,..,m (the
notation: here are the same as in the proof of Theorem 3.1), Let
i= (jl’ e js) be an s-tuple of integers between 1 and k such that the
rank ofi —»Qj (£, x) is equal to dim F(D)(x) for all t in an open dense
subsethfE?. Let Q' ={£:i € BS, ti>0 fori=1,...,s} N Q.

Let {£ p} C Q be a sequence that converges to 0, and letNTp = (Tl’ ey
T T, - “E pu ). We can assume that || tp | < T forallp>0. If
we let yp = Qi (;[" p’ Qj(ip,x)), then yp € LX(D,'I'). We next show that
(D, x). Since the

0
e N
mapping 2 —»Qi(s P’ z) is a diffeomorphismr from I0 ~P (D, x) onto

Y, is in the interior of Lx(D,T) relative to I

IT(D,x), it suffices to show that $ (t ,* .s in the interior of L (D ']t Ih

0 ;l'\"p X ’ ‘~p :
s _ .

LetV_ = {t:teR°, t,>0,...,t>0, ||t| -l\gp\\}. Clearly, if

defined by Fp(i?i =@ i (t ,x). We show that Fp is analytic. Since Fp

~/
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is analytic as a map from Vp into I(D, x), it suffices to show that it is
continuous., But this follows from the previous lemma, because Vp is
convex. The rank of t —» Qj (t,x) is equal to dimF(D)(x) at t =t _. Since

P
V is a submanifold ost of codimension 1, it follows that the rank of

Fp at Lp is equal to the dimension of IO“LP (D,x). Thus, Fp(VP) con-
tains a neighborhood of Fp(£ p) in IOH,E,P “ (D, x). It follows that

Qj(i p,x) is in the interior of Lx(D, “Lp“ ). By the previous remark

we conclude that yp is interior to Lx(D,T) in Ig (D,x)., There remains

to be shown that yp converges to y in Ig(D,x). The mapping (L , ~s) -

$ . (L,Q .(E,x)) is continuous as a map from Em)(gg- into I(D,x). The set
V~={(£,§) Dt > 0, sj>0,i =1,...,m, j=1,...,s, “L“ +] sl =T}

is convex, and is mapped into Il(I)' (D,x). Therefore, the previous lemma is
applicable, and we conclude that yp -yinl g (D,x). This proves our

theorem.

4. Applications to Control Systems

We shall consider systems of the form

dx(t)
dt

= F(x(t), u(t))
defined on an analytic manifold M. The functions u belong to a class
% of "admissible controls'. We make the following assumptions about

% and the system function F:

(i) The elements of # are piecewise continuous functions defined

in [0,), having values in a locally path connected set 2. 2 € R m

(2 is locally path connected if, for every w ¢ 2 and every neighborhood
V of w, there exists a neighborhood U of w such that U C V, and U

N Q is path connected). In addition, we assume that % contains
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all the piecewise constant functions with values in Q@ , and that every

element of ¢/ has finite one-side limits in each point of discontinuity.

% is endowed with the topology of uniform convergence on compact

intervals,

(ii) F: MX Q --TM is jointly continuously differentiable. For

eachu ¢, F(-,u) is a complete analytic vector field on M. We know

that for eachx e M, ue %, the differential equation

dx(t

Oy, ut)  x(0) = x, (1)
has a solution defined for 211t ¢ [0,#), where #>0. We denote such a

solution by TI (x,u,-), and we assume that TT (x,u,t) is defined for all

t e[0,9.

For the above defined contro!l system, we now state the basic

controllability concepts. We say that y ¢ M is attainable from xeM

at time t (t = 0), if there exists u ¢ % such that n(x,u,t) =y. For each
x € M, we let A(x,t) denote the set of all points attainable from x at
timet. If 0= t< o, we define A (x,t) =UA (x, s) and A(x) = U A

sgt t=z0"
(x,5). We say that the system is controllable from x if A(x) = M, and

that it is controllable if it is controllable from every x ¢ M., We say

that the system has the accessibility property from x if A(x) has a non-

empty interior, and that is has the accessibility property if it has the

accessibility property from every x ¢ M., Finally, we shall say that the

system has the strong accessibility property from x if A(x,t, has a non-

empty interior for some t > 0, and that it has the strong accessibility

property if it has the strong accessibility property from x for every

X ¢ M,
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Forwe 2, let Xw = F(-,w), from assumption (ii) it follows that
Xw is a complete analytic vector field -on M. Throughout the remaining
part of this article we let D = {Xw tw ey,

LEMMA 4.1, For eachxc¢ M, _é (x) is contained in I(D, x),

The proof is identical to that of Lemma 2, 4, and will, therefore,

be omitted,

Remark 4.2, It is easy to see that the control system defined by
restricting I to I{D, x) satisfies the same assumptions as the original
system, Since it can be readily verified that the map u — T(x, u, t) is

continuous as a map from % into M, it follows that this map is also

continuous as a map from % into (D, x).

We now want to obtain a result for A(ﬁ’.t.) which is similar to that
of Lemma 4.1, It is here that the assumption about 2 will be utilized.
Let # be the class of piecewise constant 2-valued functions defined on
[0,0), Clearly, & is dense in % . Moreover, thp local connectedness
of  implies that the condition of Remark 3, 8 is satisfied (this can be
easily v rified, and we omit the proof). Thus, we can apply Lemma
3.7, with C =%and K =4, to obtain the following result:

LEMMA 4.3, LetxeM. Foreachtz0, A(x, CI:)(D.x),

Proof. Since# contains &, we have that Lx(D' t) € A(x,t). Let
G: % - 1ID,x) be defined by G(u) = TI(x,u,t), We have that G(#) = Lx
(D, t) and by Theorem_ 3.9, (&) C I;(D,x). Now our conclusion
follows immediately from Lemma ‘3. 7, and the proof is complete,

The above lemmas combined with the theorems of the preceding
section yield the following results:

THEOREM 4.4, Letx e M. Thené (x) C (D, x). Moreover,

for every T > 0, the interior of’é(x,T) relative to (D, x) is dense in
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é(x,T)(and, in particular, is non-empty).

Proof. The first part is just the statement of Lemma 4. 1. To prove
the second part, we can assume that I(f),x) = M (if not, replace the
original system by its restriction to I(D, x), cf. Remark 4. 2), Since
' EX(D,T) is dense in .i\J(x,T), our conclusion follows immediately from
Theorem 3. 1,

THEOREM 4.5, Let x ¢ M, Then, for each t >0, A(x,t) C
I(;(D,x) and, moreover, the interior of A(x,t) relative to I(;:(D,x) is
dense in A(x,t) (and, in particular, is non-empty).

Proof. The first part is just the statement of Lemma 4.3. To prove
the second part, we apply Lemma 3.7 to the function G of Lemma 4. 3,
and we get that G is continuous as a map into ItO(D,x); therefore,

Lx(D’ t) is dense in A(x, t) relative to IB(D,x). Our conclusion now follows
immediately from Theorem 3.9, and the proof is complete,

The following two controllability criteria follow immediately from
the Theorems 4.4 and 4.5, and from Lemma 2. 1;

COROLLARY 4.6, The system has the accessibility propertv
from x if and only if dimF{D)(x) = dim M. In this case A(x,T) has a non-
empty interior for every T >0,

COROLLARY 4,7, The system has the strong accessibility
property from x if and only if .70(D)(x) = dim M. In this case A(x,T) has
a non-empty interior for every T >0,

The preceding results can be utilized to derive relationships
between accessibility and strong a.ccessibility. Even though the latter
property seems much stronger than the former, we show that, for a very
large class of manifolds (including the spheres S" for n> 1, and all com-

pact semisimple Lie groups, but not En). it is in fact implied by it,
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On the other hand for a still larger class of manifolds (including R")
controlability (which trivially implies accessibility), is sufficient to
guarantee strong accessibility (the fact that controllability implies
that dim # (D*)(x) @ n + 1 for all x was proved by Elliott in [5]),
Consider a system on a connected n-dimensional analytic
manifold M, having the accessilility property but not having the strong
accessibility property. Létl_I_Dbe the family of associated vector fieids,
By Corollary 4, 6, dim J(D)(x) = n for all x ¢ M, By Corollary 3, 4 the
number dim J’O(D)(x) is independent of x. Since this number is either
norn-1, Corollary 4, 7 implies that dim JO(D)(x) =n-1 for all

x ¢ M. Choose a fixed X ¢ D, and use §, to denote the one-parameter

t
group generated by X(i, e., for every y ¢ M, the integral curve of X
that passes through y at t = 0 is the curve t - Ot(Y)). Define a mapping

F from the manifold SXR into M by
F(s,t) =4 .(s).

One shows easily that F is a local diffeomorphism onto M.

Moreover, SXR is connected. In fact, we have (cf. [18], Ch, 2, for
the definition of a covering projection):

LEMMA 4.8. The map F is a covering projection.

Before we prove Lemma 4,8, we show how the results mentioned
above follow from it.

THEOREM 4,9, Let M be a manifold whose universal covering
space (cf. [18]) is compact, Then every system having the accessibility
property has the strong accessibility property,

Proof, If the universal covering space of M is compact, then

every covering space of M is compact. If it were possible to have
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a system on M having the accessibility property but not the strong
accessibility property, we could define, for such a system, Sand F
as above. It woulu follow that SXR is compact, which is clearly a
contradiction.

Remark. If n>1, the sphere s" is .simply connected (and compact).
Therefore Theorem 4.9 applies. Also, if M is a connected compact
semisimple Lie group (for instance SO(n), if n >2), the universal
covering group of M is also compact (cf. [7], p. 123) and, therefore,
Theorem 4. 9 applies in this case as well,

THEOREM 4, 10. Let M be a manifold whose fundamental group
has no elements of infinite order, Then every controllable system on
M has the strong accessibility property.

Proof. A controllable system obviously has the accessibility
property. Assume it does not have the strong accessibility property.
Define S and F as before. We show that F is one-to-one. Otherwise,

there would exist s c Sand a T # 0 such that F(T,s!) =% T(sb) =

]
0’50

F(0, s Therefore » T(S) = S. Define H: SXR -+ SXR by

0) =8,
H(s,t) = (& T(s), t-T). Then H is well defined, because 3 T(S) = S, and

is a homeomorphism, Moreover, if (s,t) ¢ SXR

F(H(x,t) =8, 1(s..(s)) =8,(s) = F(s,1).

Therefore H is a covering transformation (cf. [18], Ch, 2),

Moreover, H has infinite order, because Hm(s, t) = (&mT(s),t-mT),

‘80 that H™ is not the identity map if m # 0. We know from [18] Ch, 2
that the group of covering transformations of the covering space

(GXR, F) is isomorphic to a subgroup of the fundamental group mof M,
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If mhas no elements of infinite order, then this is a contradiction,
Therefore F must be one-to-one. On the other hand, the points that

are attainable from x, must belong to S*(= Qt(S)) for some nonnegative

0

"t (cf. Theorem 4.5), Therefore the points in S-t are not attainable,

if t> 0. Thus, the system is not controllable, and we have reached a

contradiction.

<

Remark. Theorem 4,10 applies, in particular, to any simply

connected manifold, such as Rn.

Proof of Lemma 4.8, We must show that every point of M has a

neighborhood that is evenly covered by F. Let m € M. Since Fis a

local diffeomorphism onto, there exist s ¢S, te 5, €¢> 0 2nd a connected
neighborhood U of s in S such that F(s,t) = m and that the restriction of

F to UX(t-¢,t + ¢ ) is a diffeomorphism onto an open subset Vof M.

We claim that V is evenly covered. LetA = {T: @T(S) =S}. For each

T ¢ A, let U'r = 'r(U)‘ Since 5, ¢ S-~Sisa diffeorporphism, it follows

that U'r is open in S and connected for each 7 ¢ A. We first show that,
if0<|7- nf<2e, 7TecA, neA, then U'r and UY\ are disjoint. Assume
they are not. Then & T(U'r) and 3 T(U'{ are not disjoint, for any T. Choose
T such that both T +7 and T + n belong to (t-'e, t+e). Letu = QTH(uI) =
5 +n(u2) be a common element, where u, and u, belong to U, Then the
points (ulT +71) and (uZ,T + n) belong to UX(t-¢,t+¢). Since the re-
striction of F to this set is one-to-one, it follows that 7 = n, which is

a contradiction, For each 7 ¢A, let WT = U'r X (t-T-¢, t-T+¢), We shall

conclude our proof that V is evenly covered by showing:
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(a) the sets \VTare open, connected and pairwise disjoint,
(b) for each T ¢ A, F maps W_r diffeomorphically onto V, and
(c) the'in{r‘:arse image of V under F is the union of the sets W'r‘
The first two assertions of (a) are obvious. If T and n beloag to
A, and 7 # n, then either |7 - n| < 2eor |7-n|Z2¢c. In the first
case W'r and WT\ must be disjoint, because U'r and Unare disjoint,
In the second case, W_’; and W'ﬂ are also disjoint, because the intervals
(t-7-¢, t-T+e¢) and (t-mr g t-n+ €) cannot have a point in common,
To prove (b), take 7 ¢ A, Define G: UX (t-¢,t +a - W’r by
G(u,s) =(#& T(u), g-T). Clearly, G is a diffeomorphism from UX(t-¢,
t + ¢) onto W'r' Moreover if uelU, t-e<q <t +¢ ,thenF(G(u,g))z(bc-'r(@.r(u)) =
Qo (u) = F(u,s). Since the restriction of F to UX(t-¢, t+€) is a diffeomor-
phism onto V, the same must be true for the restrictinn of_lf to WT .
Finally, we prove (c), Letuc S, g ¢ B be such that F(u,s) ¢ V.
T'hen there existu'e U, '€ (t-¢,t+ ¢) such that F(u‘,J') = F(u, o).
Therefore u = Qc' _éu'). This implies, in particular, thatr=¢g"' - ¢
belongs to A, and thatu € U'r . Moreover, sincet-c¢<0'< t+e,
it follows thatt - 1+ - e<@ < t- v+ ¢. Therefore (u, o) ¢ WT )
The proof Lemma 4. 8 is now complete.

5. Examples.

Example 5.1, LetM =R", @ =R™, andletF: MX Q -TM

be defined by F(x,u) = Ax + Bu, where A and 3 are, respectively,
nXn and n X m real matrices. We kave that D = {A(-) +Bu:uce Rm},

~

Let b, denote the i -th column of B, Then, as shown by Lobry [16],

T (D)(x) contains the vectors:



It i5 not dAifficult to see that the above set of vectors forn.s a
system of generators for J(D)(x). From Corollary 4, 6 we gel that

A(0O,t) has a non-emnty interior in R "yt and only if {j_-bi,iAbi,. Ce

~ o~

+A bi.i =1,2,...,m} has rank n; equivalently. A(0,t) has a non-
-1
ernpty interior in Ijn if and only if rank [B,AB,... ,An B] = n.

Since, obviously, g'o(D)(O) = J(D)(B), we conclu”e *hat A(E, t)
has a non-empty interior whenever é(O,t) does. The above statements,

along with the fact that A(0,t) and A(O,t) a: !inear subspaces oan,

n-1

imply that, if rank [B,AB,...,A B] = n, then for each t> 0

A(9,t) =£;(E, t) = A(E) = R? (Kalman [12]). Thus, in this example, the
accessibility property 18 equivalent to contrcllability. This is, of

course, not true in general.

Example 5.2, LetM =R”, @ ={ueR™: 0su =1, i=1,....m}

: - m
and lei F(x, u) -(AO + 2i=1 0"
Am are nXn real matrices., Then D is the set of all vector fields Xu

where Xu(x) = (A0 + Zlizl uiAi) x, The set M™ of all nXn real matrices

Aiui)x for all (x,u) ¢ RnX 2, where A

is a Lie algebra, with the bracket defined by [P,Q] = PQ - QP. To
each matrix Pthere corresponds a vector field V(P) defined by V(P)(x) =
Px. It is easy to check that V([P,Q]) = [V(P)V(Q)]. Using this fact,

the spaces 7 (D)(x) and JO(D)(x) can be readily computed:
F(D)(x) ={Px: PeL},

'and

F(D)(x) = {Px: PeL]
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where L is the Lie algebra spanned by A Am, and Lis the ideal of

opo.n,

L. spanned by A ,... ,Am. We remark that for this example the theory

1

of Section 4 is valid even if 9/ is the set of all bounded and measurable

2 -valued functions. This is so because the only properties of the

class of admissible controls that were utilized in Section 4 were:
(a) that the class of piecewise constant controls is dense in g (in the
topology cof uniform convergence), and (b) that, if {Ba} are elements of
% that converge uniformly to u, then ]'1(3(1,5,1:_) converges to Tl(u, x, t).

In our example, both (a) and (b) remain valid if the topology of
uniform convergence is replaced by thai of weak convergence. .This
is easy to verify, and we shall 20t do it here (see Kufera [14)).
Moreover, the set of 2-valued measurable fuuctions defined in [0,_'_1'__]
is weakly compact. It follows that the sets é(x,T), A(x,T) are com-
pact fcs each T > 0. Denote their interiors (relative to I(D,x) and
Ig (D,x) respectively) by Int é(x, T), Int A(x,T). It follows that
;/}(x,'I) is the closure of Int _ﬁ,(x,T), and that A(x, T) is the closure of
Int A(x,T). Therefore, our results contain those of Ku¥era (in this
connection, see also Sussmann [21)),

Remark. The result of the preceding example is a particular
case of a more general situation. Let G be a Lie group, and let M
be an analvtic manifold on which G acts analytically to the left.
Then there is a homomorphism A from the Lie algebra of G into
V(M}, defined by

AX)(m} = (exp (£X) - m),

the derivative being evaluated at t =0, If XO, cees Xk belong to

the Lie algebra o" G, we can consider the control problem
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dx K
— = X' z
0(x) +i=

dt uiX i(x)'

1

where X% = )‘(Xi)' Example 5. 2 results by letting G = GL(n, Ii) and
M =R".

Example 5. 3. This example shows that the analyticity assumptions
are essential. Consider the following two systems defined in the (x, y)
plane:

(Sl) X = fl(x,y,u)

y =g lxy,u)
and
(SZ) X = fz(x, Y, u)

y = g,(x,y,9)
Let fl_=£ fzal, gla.;-s 0, and gz(x, y,u) =9 (x) where p is a C® function
which vanishes for - «<x <1, and which is equal l;o 1 for x> 2. It is
clear that for (Sl) the seté((O, 0)) is the half line {(x,y) : y = 0, x =20}
while, for (SZ), é((O, 0)) has a non-empty interivcr. However, both systems
are identical in a neighborhood of (0, 0).
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